

a2zpaper.com

Next Semester के Latest Papers सबसे पहेले Download करने के लिए आप हमे Contact भी कर सकते है

Whatsapp No: 8076723805

Email: dm8076723805@gmail.com

Exam. Code : 211001

Subject Code: 4849

M.Sc. Mathematics 1st Semester

Paper—MATH-554

Time Allowed-Three Hours] [Maximum Marks

Note carry equal marks. ONE question from e Attempt FIVE questions in all, section. All questions selecting at least

SECTION-A

- a in plane. velocity and accele Obtain the radial motion of a particle se components of
- 0 of a rigid body The points a have a), instantaneous a -a, a), (a, velocity a a)

$$\left(\frac{\sqrt{3}v}{2},0,\frac{\sqrt{3}v}{2}\right), \left(\frac{-v}{\sqrt{3}},0,\frac{-v}{\sqrt{3}}\right), \left(0,\frac{-v}{\sqrt{3}},\frac{v}{\sqrt{3}}\right).$$

Show that the body has the line through the origin

direction cosines
$$\left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$$
 as

having

instantaneous axis of rotation and that the

magnitude of the angular velocity is
$$\frac{v}{2a}$$
.

Subscribe A2ZPAPER.COM

- 2 (a) with velocity has velocity rigid body s AP = $(\vec{\mathbf{w}} \times \vec{\mathbf{v}}) \mathbf{w}^2$ has v. Show that every particle vector a spin w and a +μw, μ is arbitrary parallel to W particle lies on the scalar. A of of
- (b) Prove that

$$\frac{d\vec{r}}{dt}\Big|_F = \frac{\partial \vec{r}}{\partial t}\Big|_M + \vec{w} \times \vec{r}$$
, where the symbols

co-ordinates. components have their usual mean of inte use it in to find the spherical velocity polar

SECTION

- (a) Explain to uniform acce rectiline ated par on and resisted motion with motion respect
- 9 not lose harmonic o board which is particle 2 contact with Mations 4772 made show the of period placed execute board at that the on vertical and any particle 2 amplitude horizontal time simple does
- 4 (a) cardioid by vertical. fixed $a(1 + \cos \theta)$, the initial line being the downward modulus rest and is A small ring COS wire when the string an attached 0 IS. elastic mg. in 40 COS the of If the to string mass m can slide the is horizontal, show shape particle point of of COS natural the 9 1S released length a cardioid of on that the

9 is constant. about the Show that momentum if the axis G.H of the particle about the axis moment of 200 is zero then the resultant force the angular

SECTION-C

- 5 (a) square law of force directed towards a fixed always moving under central force. Show that the inverse Derive the differential equation of orbit of a particle produces a conic type orbit. point
- 6 the usual notati A particle is describing an ellipse of eccentricity when the about a velocity hyperbo centre torce at contricity one end of a Prove a focus. Prove $1/a), h^2 = \mu a(1)$ (9 that the new 8e²)1/2 minor with path

6

- (a) of m position vector of m relative M, moves with constant velocity, and that if where Show that the centre of mass of the two particles move under the force of their mutual attraction. relative to M is gravita velocity IS the mg V, gravitational show particles of B that circle of radius < constant. 11 masses H1: LY(M 11 a described + m)/a]1/2 If the orbit m and 7
- 0 a note on elliptic harmonic motion.

- (a) about the axis through O having direction cosines Determine the moment of inertia of the distribution $[\lambda, \mu, \nu]$ in terms of there D.Cs. and A, B,
- 9 mutually orthogonal. at a point of Prove that there exists three principal directions a rigid body which are real and
- (a) conditions for the two systems to be equimomental. and prove the necessary and sufficient

00

9 the principal Show that in two-dime directions sional mass distributions usual notations are

given by

tan 200

Subscribe A2ZPAPER.COM